
ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8683

Reliability estimation of object oriented design:

A systematic review

 Anil Kumar 1
, Namrata Dhanda 2

Scholar, Department of Computer Science, GITM, Lucknow, India
1

Associate Professor, Department of Computer Science, GITM, Lucknow, India
 2

Abstract: Over the past decades, software quality attributes have been extensively studied. In compare, fewer

attentions have been paid to the field of software reliability. The size and complexity of computer systems have grown

during the past decades in a very impressive manner. Complexity is a major factor of software reliability which

degrades the performance of reliability. High complexity makes the system unreliable. There are a number of

approaches to estimate reliability, several of which have been discussed in this paper. Software reliability can be

increased by controlling Object-Oriented (OO) constructs such as coupling, cohesion, inheritance and polymorphism.

This review paper presents the results of a systematic literature review conducted to gather facts on software reliability

estimation of object oriented design. In this review paper, our contribution is to discover the available recognized

comprehensive and an absolute model or frameworks for measuring the reliability of object oriented design at an early

phase of development life cycle.

Keywords: Software reliability, reliability measurement, Software metrics, Object Oriented Design, Software Quality.

1. INTRODUCTION

Software reliability is the possibility of failure-free

software operation for a specified period of time in a

specified surroundings.IEEE-Std-729-1991: “Software

reliability is defined as the probability of failure-free

operation for a specified period of time in a specified

background”. ISO9126: “Reliability is the capacity of the

software product to continue a particular level of

performance when used under specified situation”. Easy

definition of reliability: Reliability is a measurement of

how very well the software provides the services expected

by the customer. In new words it is the possibility of the

product running “appropriately” larger than a specified

period of time. More informally it indicates a product‟s

honesty or dependability. In order to formulate

comparison among different software products, software

quality is a big parameter. There are a variety of attributes

of software quality[9,14]:

 Reliability

 Functionality

 Flexibility

 Performance

 Serviceability

 Modifiability

 Analyzability

 Maintainability

 Testability.

Software reliability is one of the most vital characteristics

of software quality, collectively with above attributes.

Although software reliability is tough to achieve, for the

reason that the complexity of software tends to be high.

Despite the fact that the complexity of software is

inversely connected to software reliability, it is openly

related to other important factors in software quality,

particularly functionality and capability.

Software reliability area in addition includes a range of

issues such as software reliability modeling, forecast

analysis, reliability quantity, fault categorization,

inclination analysis, opinion data analysis, software

metrics, software testing, error-tolerance, mistake trees,

simulation, and a lot more. In this paper I will essentially

center of attention on software reliability modeling,

reliability quantity, software metrics and testing issues

[15]. For the inspiration that reliability measurement is the

key to accomplishing high reliability software. Our

inspiration is that without measurement, software

engineers would not be capable to achieve high reliability

software[16,17]. Thus, design phase measurement is

important to developing reliable software.

II. RELIABILITY

Software Reliability R (t): The chance of failure-free

operation of a computer program for a particular duration

under a precise environment.

Failure: The going away of program operation from user

requirements.

Fault: A deficiency in a program that causes failure.

Failure Intensity (rate) f (t): The projected quantity of

failures experienced in a specified time interval.

Mean-Time-To-Failure (MTTF): projected value of a

failure interval.

Expected total failures m (t): The number of failures

projected in a time period t.

Reliability Theory

Let "T" be an arbitrary variable representing the failure

time or life span of a physical system.

For this system, the chance that it will fail by time "t" is:

The chance of the system in existence until time "t" is:

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8684

Failure rate - the chance that a failure will happen in the

interval [t1, t2] given that a failure has not occurred earlier

than time t1. This is written as:

Hazard rate - boundary of the failure rate as the span of

the interval approaches zero.

A reliability intention articulated in terms of one reliability

measure can be effortlessly transformed into a further

measure as follows (assuming an “average” failure rate, l,

is measured).

Software reliability is a branch of software quality. It

associates to a number of areas where software quality is

concerned. Consequently quantifying software reliability

leftovers a complex problem as we don‟t have a high

understanding of the character of software. Reliability is

considered as the possibility that a system will not fail to

perform its proposed functions over a specified time

period[18]. Consumers are sincerely attentive of the

reliability of software; they are probable to be mostly

unworried with the point of the reusability of the

components making up the source code.

Unreliability has a quantity of regrettable consequences

and as a result for many products and services is a severe

warning[19]. For example low reliability can have

inference for:

 Protection

 Competitiveness

 Profit boundaries

 Charge of repair and maintenance

 Delays further up supply chain

 Reputation

 Good will

III. SOFTWARE FAILURE MECHANISMS

There are a few key characteristics of software breakdown.

These are:

 Failure grounds

 Wear-out

 Repairable system thought

 Time dependency and life cycle

 ecological factors

 Reliability forecast

 Redundancy

 Interfaces

 Failure rate motivators

 Built with standard mechanism

Fig 1. Lifetime of a hardware product

Fig 2. Lifetime of a software product

IV. SOFTWARE RELIABILITY MODELS

Software reliability models have emerged as community

try to recognize the individuality of how and why software

fails, and try to measure software reliability. In excess of

200 models have been developed since the early 1970s,

but how to measure software reliability still leftovers

mostly unsolved. There is no particular model that can be

used in all situations. No model is comprehensive or even

representative[20]. The majority software models

have few assumptions, a few factors, and a statistical

function which relates the reliability through the factors

and is habitually higher order exponential or logarithmic.

Software modelling methods can be separated into two

subcategories:

 Prediction modelling.

 Estimation modelling.

Both kinds of modelling methods are based on observing

and collecting failure data and analyzing with statistical

conclusion. An evaluation among these categories is

specified in below table:

Issues Prediction Models Estimation

Models

Data Reference Uses past data Uses data from

the current

software

development

effort

When Used In

Development

Cycle

 Generally made

prior to

enhancement or

test phases; can be

used as near the

commencement as

perception phase

frequently made

later on in life

cycle(later than

some data have

been collected);

not usually used

in thought or

development

phases

Time

organization

estimation

reliability at some

prospect time

Estimate

reliability at

either current or

some future

time

Table 1. Comparison between modeling techniques

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8685

V. RELATED WORK

Goseva and Trivedi [1] offered a skeleton for software

reliability modelling based on Markov renewal process

which logically introduced dependence between

successive software runs. The offered approach enabled

the phenomenon of failure clustering to be particularly

characterized and also its impacts on software reliability to

be analyzed. In addition, it furthermore provided support

for a more reliable and flexible model formulation and

explanation.

Markov renewal model formulation had a number of

advantages, in cooperation hypothetical and practical. It

makes available flexible and extra steady modelling of

software reliability. Taking into consideration the freedom

in the midst of software runs is a unique case of the

planned modelling framework. The model was appropriate

to different phases of the software life cycle in view of the

fact that the planned modelling approach was valid for

testing (repairing) stage, as fine as for confirmation time

and operational segment.

Technology evolution

Hamlet et al. [2] offered a foundational concept for

reliability of software system fully based on components.

The concept has illustrated how component developers

could design and test their components to deliver

measurements which can later be used for estimating

composite system reliability by system designers without

implementation and testing of the designed system. The

concept addressed the very important methodological

issues inherent in certifying components to be released for

later use in a random system.

According to Lo et al. [3], the constraints in the software

reliability models are generally directly gained from the

field failure data. In view of the fact that, the systems have

active properties and the failure data is not enough, it is

actually tough to decide the values of the parameters

truthfully.

 Gayen and Misra [4] planned a pioneering approach to

forecast the higher and lesser bound on the reliability of

the COTS Component-Based software application. On the

source of the implementation situation analysis for the

COTS Component-Based Software System, a unique

method was formulated. The planned algorithm for the

calculation of higher bound was an enhancement over

Dolbec and Shephard [5] replica for reliability evaluation

of Component-Based Software. The shortcoming of this

model was that it was implementation path self-regulating

and component interfacing time was not taken into

consideration. As a result, it was not capable to forecast

the higher bound on reliability, as the higher bound on

reliability gained using Dolbec and Shephard [5] model

was much fewer than the value gained in the planned

approach.

Fan Zhang et al. [6] wished-for a model depends on a

CDG. In this model, an operational summary of a system

is given, and the model can be used to ensure whether

reliability changes while the operational profile changes.

Assuming that control flow transits from component i to

component j, component j‟s reliability is calculated as

Tij ×(Rij ×Wij), where

Tij = the transition chance from component i to component

j,

Rij = the reliability vector for every sub field of

component j, and

Wij = the weight vector for each sub field of component j

for the transition from component i to j.

Dong et al. [7] planned a method for CBSS reliability

evaluation in which component associations are analyzed

and solved with a Markov model. This method expands

the range of Markov models. A drawback of this model is

that it assumes that all component reliabilities and

transition chances are given, but in follow this is not for all

time true.

Huag et al. [8] wished-for a method based on algebra

which presents a framework that can be put into practice

on Maude for describing sentence structure and predicting

reliability.

Goswami and Acharya [9] planned an approach to CBSS

reliability examination which takes into consideration the

system‟s component usage ratio, considered through

mathematical formulas. Due to the suppleness of the

component usage ratio, this approach may be used for

real-time applications. This approach measured on the

whole software system reliability based on the individual

component reliabilities which are combining together to

shape the system.

Si et al. [10] wished-for a framework for measuring

reliability through a component composition method.

The approach recommends five essential component

composition methods and techniques for their reliability

evaluation. Subsequent to calculating the reliability for

every composition, a process estimates the overall

application reliability based on the component

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8686

composition mechanisms and component consumption

frequencies. It is probable to identify added composition

mechanisms.

Hsu et al. [11] planned an adaptive reliability evaluation

method via path testing for complex component- based

systems. Three methods are planned for estimation path

reliability, specifically, sequence, and branch and loop

structures. The planned path reliability can then be used

for measuring the reliability of the whole application. This

approach can present a capable evaluation of software

reliability when testing information is available. A

sensitivity examination is also performed to conclude the

effect of every node on the system‟s reliability.

Wang and Huang [12] wished-for an approach for

reliability assessment based on rewrite logic (RABRL).

This technique considers systems whose condition is given

with an operational profile. Maude‟s rewrite method is

used to estimation the reliability. This method statistically

analyzes an application‟s completing progression and uses

this to just about guess the transition probabilities among

components and the predictable number of visits to

components. Though, this approach has a few limits: First,

it can only be functional to simple CBSs, and second, it

does not think about failure dependencies among

components.

Shukla et al. [13] offered an organized method which

provided a step-by-step process for rising operational

profiles for software components. The technique has used

together usage data and intended usage assumptions to

find out a usage allocation, practice structure and

characteristics of consideration.

VI. CONCLUSION

Software reliability is a key part in software superiority

but software reliability enhancement is tough for the

reason that there are no generic models to estimate

reliability at an initial stage of development life cycle.

Existing literature introduced basic software reliability

concepts such as statistical testing and a few simple

reliability models. Software reliability awareness is

essential and nonflexible to achieve it. It can be enhanced

by appropriate understanding of software reliability,

uniqueness of software and sound software design.

Guarantee of software reliability is no simple task.

Subsequent to the above conversation our conclusion is

that reliability is an eminence factor that endeavor to

predict that how much attempt will be required for

software testing. Following an exhaustive review course of

action study found that dropping effort in estimating

reliability of object oriented design is necessity in order to

deliver superiority software in time and budget.

VII. CRITICAL OBSERVATIONS

Successive successful completion of the systematic

literature review a number of important explanations can

be enumerated as follows. Reliability is coupled with

unpredicted failures of products or services and analyzing,

understanding why these failures occur is important to

improving software reliability. The main reasons why

failures take place include:

 The product is not robust for purpose or more

especially the design is inherently incapable due to

lack of analyzability.

 Failures can be caused by wear-out

 Failures might be caused by deviation.

 Wrong stipulation may basis failures.

 Misuse of the item may grounds failure.

 Items are designed for a specific operating

environment and if they are then used outside this

environment then failure can occur.

REFERENCES

[1] Goseva, K. and Trivedi, K.S. (2000) Failure Correlation in

Software Reliability Models. IEEE Transactions on Reliability, 49,
37-48. http://dx.doi.org/10.1109/24.855535

[2] Hamlet, D., Mason, D. and Woit, D. (2001) Theory of Software

Reliability Based on Components. 23rd International Conference
on Software Engineering (ICSE), Portland State University, 12-19

May 2001, 361-370.

[3] Lo, J.H., Huang, C.Y, Kuo, S.Y. and Lyu, M.R. (2003) Sensitivity
Analysis of Software Reliability for Component- Based Software

Applications. Proceedings of the 27th International Computer

Software and Applications Conference (COMPSAC 2003), Dallas,
3-6 November 2003, 500-505.

[4] Gayen, T. and Misra, R.B. (2008) Reliability Bounds Prediction of

COTS Component Based Software Application.IJCSNS International

Journal of Computer Science and Network Security, 8, 219-228.

[5] Dolbec, J. and Shepard, T. (1995) A Component Based Software

Reliability Model. Proceedings of the 1995 Conference of the

Centre for Advanced Studies on Collaborative Research, Toronto,
7-9 November 1995, 19.

[6] Zhang, F., Zhou, X., Dong, Y. and Chen, J. (2009) Consider of

Fault Propagation in Architecture-Based Software Reliability
Analysis. International Conference Computer System and

Application, Rabat, 10-13 May 2009, 783-786.

[7] Wang, D. and Huang, N. (2008) Reliability Analysis of Component
Based Software Based on Rewrite Logic. 12th IEEE International

Workshop on Future Trends of Distributed Computing Systems, 21-

23 October 2008, 126-132.
[8] Huang, N., Wang, D. and Jia, X.G. (2008) Fast Abstract: An

Algebra-Based Reliability Prediction Approach for Composite Web

Services.19th International Symposium on Software Reliability
Engineering, Mysuru, 16-19 November 2009, 285- 286.

[9] Abdullah, Dr, Reena Srivastava, and M. H. Khan. "Testability

Measurement Framework: Design Phase Perspective.",International
Journal of Advanced Research in Computer and Communication

Engineering Vol. 3, Issue 11, Pages 8573-8576 November 2014

[10] Si, Y.J., Yang, X.H., Wang, X.Y., Huang, C. and Kavs, A.J. (2011)
An Architecture-Based Reliability Estimation Framework through

Component Composition Mechanisms. 2nd International

Conference on Computer Engineering and Technology, Chengdu,
16-18 April 2010, 165-170.

[11] Hsu, C.-J. and Huang, C.-Y. (2011) An Adaptive Reliability

Analysis Using Path Testing for Complex Component Based
Software Systems. IEEE Transaction on Reliability, 60, 158-170.

http://dx.doi.org/10.1109/TR.2011.2104490

[12] Wang, D. and Huang, N. (2008) Reliability Analysis of Component
Based Software Based on Rewrite Logic. 12th IEEE International
Workshop on Future Trends of Distributed Computing Systems, 126-132.

[13] Shukla, R., Carrington, D. and Strooper, P. (2004) Systematic

Operational Profile Development for Software Components.
Proceedings of the 11th Asia-Pacific Software Engineering
Conference (APSEC„04), Busan, 30 November-3 December 2004, 528-537.

[14] Abdullah, Dr, Reena Srivastava, and M. H. Khan.”Modifiability: A

Key Factor To Testability”, International Journal of Advanced
Information Science and Technology, Vol.26, No.26, Pages 62-71 June 2014.

[15] Abdullah, Dr, Reena Srivastava, and M. H. Khan. "Testability

Estimation of Object Oriented Design: A Revisit.", International

ISSN (Online) : 2278-1021
ISSN (Print) : 2319-5940

International Journal of Advanced Research in Computer and Communication Engineering
Vol. 3, Issue 12, December 2014

Copyright to IJARCCE DOI 10.17148/IJARCCE 8687

Journal of Advanced Research in Computer and Communication
Engineering, Vol. 2, Issue 8, Pages 3086-3090 August 2013.

[16] University of Sunderland, “Software Measurement and

Reliability”, Quality and Information Systems Strategies,
COMM1H, 2003.

[17] Pan, J., “Software Reliability”, Carnegie Mellon University,

Dependable Embedded Systems,
1999.http://www.ncst.ernet.in/education/apgdst/sefac/slides/Reliabi

lity_QA_Standards.ppt

[18] Vilkomir, S., “SQRL‟s future work in software reliability”,
International Symposium CTVR, 2004.

[19] Sawada, K., Sandoh, H., “A Summary of Software Reliability

Testing Models”, International Journal of Reliability, Quality and
Safety Engineering, 1999.

[20] Schneidewind, N., F., “Software Reliability Measurement”,

Reliability Review, The R&M Engineering Journal, 2003.

	Hamlet et al. [2] offered a foundational concept for reliability of software system fully based on components. The concept has illustrated how component developers could design and test their components to deliver measurements which can later be used ...

